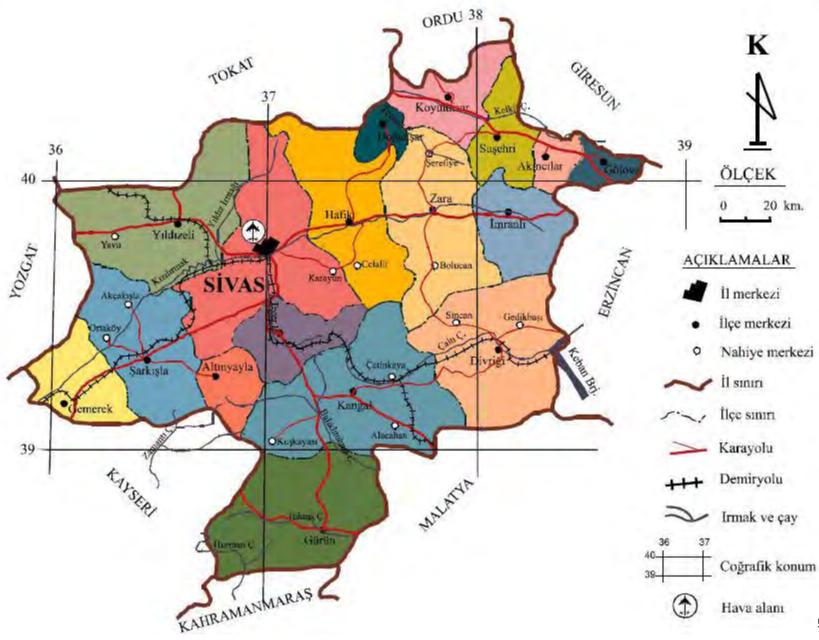


Gypsum Areas and Endemism in SİVAS

PROF.DR. H. AŞKIN AKPULAT

Cumhuriyet University Sivas/TURKEY



Gypsum (CaSO4.2H2O)

Floristic studies considering soil structure, particularly pure floristic studies in gypsum, are very rare. The restriction of vascular plant species in soil which is high in gypsum was first reported by Johnston (1941) from the Chihuahuan Desert of northern Mexico, and has since been observed in many arid and semi-arid regions of the world (Parsons, 1976).

However, the features of the gypsum habitat which provide the selective force for the evolution of gypsophile endemics have not been clearly **identified** (Powell and Turner, 1977).

- Gypsum outcrops have a scattered distribution in arid and semi-arid areas throughout the world, covering about 100 million ha (Boyadgiev & Verheye 1996).
- Due to their particular chemical and physical properties, they harbour a unique flora, with a high degree of rare and endemic taxa(Parsons 1976; Meyer 1986; Akpulat & Celik 2005; Moore & Jansen 2007).

- Consequently, this habitat type is included in the European Habitat Directive (Anonymous <u>2003</u>) as a priority for conservation.
- In turn, many of the characteristic plant species are under different degrees of threat and thus are included in red lists and red books and are protected by international, national or regional legislation (e.g. Anonymous 2003)

- □ Gypsum areas occupy 0.5% of Turkey (Boyadgiev, 1976; Jafarzadeh and Zink,2000) and the largest fraction of gypsum occurs within Sivas province (Alagöz, 1967; Gökçe and Ceyhan, 1988).
- Gypsum (CaSO₄.2H₂O) is widely distributed in Sivas(Turkey), occurring **chiefly** in the formations of Miocene age.

- It forms a particular site due to the soil characteristics derived from the gypsiferous mother rocks.
- □ "Gypsiferous soils" refers to soil with more than (≥ 2% gypsum) (Ketenoğlu et al., 2000).

	Country	km²	% of total area of country	% of area of gypsiferous soils
Africa	Morocco	1114.3	2.5	1.7
	Algeria	7966.3	3.3	12.2
	Tunisia	1439.8	9.3	2.2
	Libya	3956.8	2.2	6.0
	Egypt	382.2	0.4	0.6
	Sudan	785.0	0.3	1.2
	Somalia	10161.2	16.2	15.5
	Ethiopia	1423.4	1.3	2.2
	Mali	2818.3	2.3	4.3
	Mauritania	396.0	0.4	0.6
	Namibia	5327.7	6.5	8.2

	Country	km²	% of total area of country	% of area of gypsiferous soils
Southern	Syria	3966.6	21.6	6.0
Asia	Jordan	80.5	0.8	0.1
	Saudi Arabia	82.5	0.04	0.1
	Oman	471.6	15	0.7
	Yemen A.R.	2931.0	8.8	4.5
	Kuwait	354.6	30	0.5
	Iraq	4779.2	11.0	7.3
	Iran	4.2	2	
	Pakistan	9.5	0.01	47
	India	182.0	0.06	0.3
Central Asia	USSR	5074.1	0.2	7.7
	Mongolia	60.9	0.04	0.1
	China	11484.9	1.2	17.5
Europe	Turkey	64.2	0.08	0.1
	Spain	165.5	0.3	0.3
North America	New Mexico	78.0	50	0.1

- Massive gypsum covers a large area around Sivas, Zara and İmranlı which is extensively karstifed with numerous sink holes and depression.
- Hafik Lake to the east of Sivas, Tödürge Lake to the west of Zara and Ulaş- Lake to the south of Sivas now occupy the karst depression (Nebert, 1956; Ceyhan, 1987)

- Plant specimens are collected from the areas where gypsum is dense and clearly seen at the surface.
- Therefore these areas can be **defined** as gypsum habitats without any doubt.

Gypsum and poliploidy

- Polyploidy is widespread in plants and has been a major feature in plant evolution.
- Somatic chromosome numbers were found to be 2n=2x=18 in *Achillea sipikorensis* and 2n=4x=36 in *Achillea sintenisii* for the first time (Akpulat & Turkoglu, 2005).

Gypsum and poliploidy

Achillea sipikorensis

Achillea sintenisii

- The materials of this study are 1450 vascular plant specimens collected from Sivas between 2001 and 2003.
- They were dried by means of standard herbarium methods.

- During this study 1450 vascular plant specimens were collected from the area and 328 species (340 taxa) belonging to 164 genera classified within 45 families were established.
- One species belongs to Gymnospermae while the other 339 were Angiospermae. Dicotyledones and Monocotyledones consist of 296 and 43 taxa, respectively.
- A summary of the numerical data is presented in Table 2.

Table 2: Floristik properties of the research area						
	Gymno.	Dico	ts. Monoco	ots. Tota		
Families		1	40	4	45	
Genera		1	142	21	164	
Species		1	286	41	328	
Subspecies			8		8	
Varieties			3	1	4	
Emdemic taxa			108	14	122	
Medit			6	3	9	
E. Medit.			4	1	5	
Ir-Tur.			149	24	173	
EuroSib.			4	2	6	
HyrcEuxine			1		1	
Euxine			2		2	
Others						
EX						
EW						
CR			6		6	
EN			8		8	
VU			13	1	14	
NT			14		14	
LC			64	13	77	
DD			3		3	
NE			_			

- A total of 122 taxa are found to be endemic for Turkey and the ratio of endemism is 35.8%.
- The proportion of endemism in the area is higher than the average estimated for Turkey (34.4%) (Ozhatay et al., 2003).
- The reason for this is assumed to be gypsum habitats.

The chief advantage on gypsum for the gypsophile species may be reduced moisture stress during the early summer drought, due either to reduced competition for water because of low densities or to intrinsic properties of the gypsum soil (Meyer, 1986).

Totals of the largest families in the study area

<u>Familia</u>	Genera	Taxon	(%) Taxon
1. Asteraceae	22	61	17.7
2. Fabaceae	13	39	11.5
3. Lamiaceae	14	38	11.3
4. Liliaceae	10	25	7.3
5. Brassicaceae	13	24	7.1
6. Caryophyllaceae	6	21	6.3
7. Apiaceae	14	16	4.7
8. Boraginaceae	7	16	4.7
9. Poaceae	7	10	3.0
10. Scrophulariaceae	7	10	3.0
Other families	51	80	23.4
Total	164	340	100

Taxon totals of the largest genera in the study area

Genus	Number of taxon	(%) Taxon
Astragalus	17	5.0
Salvia	13	3.7
Centaurea	13	3.7
Achillea	8	2.4
Silene	7	2.0
Gypsophila	7	2.0
Onobrychis	6	1.8
Onosma	6	1.8
Allium	6	1.8
Helichrysum	n 5	1.5
Iris	5	1.5
Others genu	ıs 247	72.8
Total	340	100

Gypsum habitat

- However, eight of these taxa grow only in gypsum. These taxa are
- Scrophularia gypsicola Hub.-Mor. & Lall,
- Thymus spathulifolius Hausskn. & Velen,
- Gypsophila heteropoda subsp. minutiflora,
- Reaumauria sivasica Kit Tan & Yıldız,
- Campanula sivasica Kit Tan & Yıldız,
- Allium sivasicum Özhatay & Kollmann and
- Centaurea yildizii.
- Achillea gypsicola

Yapılan Çalışmanın Adı	Endemizm Oranı (%)
Sivas ili Jipsli Alanlarının Florası	35.8
Tödürge Gölü (Sivas)	25.3
Hafik ve Çevresi Jipsli Toprakların Florası (Sivas)	25.3
Tecer Dağları Florası (Sivas)	22.5
Hınzır Dağı Florası (Kayseri)	21.2
Taşlıdere Florası (Sivas)	18.6
Sivas-Sıcak Çermik Arası Florası (Sivas)	17.8
Sivas-Hafik Arası Florası (Sivas)	17.7
Gövdeli Dağı Florası (Kayseri-Sivas)	17,7
Berit Dağı Florası (Kahramanmaraş)	16.0
İncebel Dağları Florası (Kayseri-Sivas)	15.0
Köse Dağı Florası (Sivas)	14.5
Deveci Dağları Florası (Yozgat-Tokat)	14.2
Çamlıbel-Yıldız Dağları Florası (Sivas-Tokat)	14.1
Kızıliniş-Geyraz Arası Florası (Tokat)	10.4

As a result,

- □ this study is conduced in a region of Turkey where the most abundant gypsum areas are present. A list of taxa occurring in gypsum is presented according to the data generated.
- Some taxa with unknown habitat information are recorded as gypsum elements.

- Liliaceae ranking as fourth largest family in the study area shows that monocotils have very special relation with gypsum.
- High endemism ratio (35.8%) implicate that more detailed studies are needed in gypsum areas.

- The other 25 taxa can be found in various habitats other than gypsum.
- These are mainly calcareous and salty habitats

- The taxa which habitat characteristics were not given in the Flora and collected in gypsum areas during this study are
- Chrysocamela elliptica (Boiss.) Boiss.,
- Minuartia anatolica (Boiss.) Woron var. tetrasticha McNeill,
- Erodium cicutarium (L.) L' Herit subsp. cicutarium,
- Astragalus glaucophyllus Bunge,
- Onobrychis stenostachya Freyn subsp. krauserii (Sirj.) Hedge,
- Sanguisorba minor Scop. subsp. minor,
- Allium scorodoprasum L. subsp. rotundum (L.) Stearn and
- Hieracium cappadocicum.

Conclusion

- High endemism
- Poliploidi
- Different habitat
- Biodiversity

İmranlı gypsum soil

Tödürge Lake (Sivas-TURKEY)

Onosma sintenisii END. VU

Muscari anatolicum END. NT

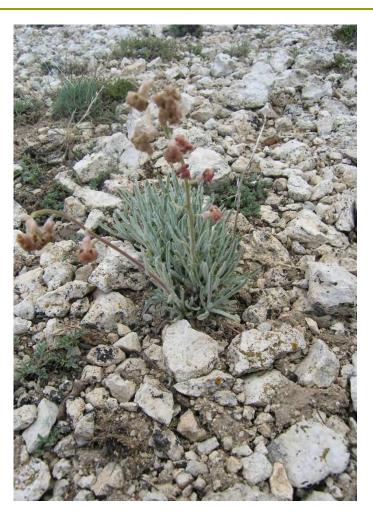
Hyancinthella acutiloba END. LC

Allium sivasicum END. LC

Glaucium acutidentatum END. LC

Gypsophila eriocalyx END. LC

Centaurea sivasica END. NT



Gypsophila heteropoda subsp. minutiflora END. DD

Helichrysum noeanum END. LC

Matthiola anchonifolia END. NT

Achillea sintenisii END. NT

Achillea sipikorensis END. NT

Achillea gypsicola END. VU

Ajuga chamaepitys (L.) SCHREBER subsp. chia



Nonea stenosolen END. LC

Scorzonera tomentosa END LC

Thymus pectinatus var. pectinatus END. NT

Isatis glauca subsp. iconia END. LC

Salvia cryptantha END. LC

Iris sari END LC

Thymus spathulifolius Hausskn. et Velen. END. CR

Journal of Arid Environments

Volume 61, Issue 1, April 2005, Pages 27-46

Flora of gypsum areas in Sivas in the eastern part of Cappadocia in Central Anatolia, Turkey

H.A. Akpulat A B. N. Celik

⊞ Show more

https://doi.org/10.1016/j.jaridenv.2004.08.004

Get rights and content

Abstract

This research was carried out in Sivas province between 2001 and 2003 years and 1450 plant specimens were collected during this period. Identification of the

