

Effect of water availability in assemblage of gypsophilous plant communities from the Potosinian Highland, Mexico Vargas-Colin, A.¹, Flores, J.¹, Brunel, J.P.², Romo, R.² & Luzuriaga, A.L.³

¹Institute for Scientific and Technological Research of San Luis Potosi, IPICYT, Camino a la Presa San José 2055. Lomas 4 sección, 78216. San Luis Potosí S.L.P., México; ²University of Guadalajara, UdG, Av. Juárez No. 976, Colonia Centro, C.P. 44100, Guadalajara, Jalisco, México; ³King Juan Carlos University, Tulipán, s/n, 28933 Móstoles, Madrid, España.

Gypsum ecosystems in Mexico

Fig. 1 Climatic diagram of Vanegas, Mexico

Table 1. Water treatments acording toclimatic data in field

Water treatments	Treat 1	Treat 2	Treat 3
Precipitation in	270	135	67.5
experiment	mm	mm	mm

X 3 water availability in field

Gypsum ecosystems in Mexico are important hotspots of biodiversity and endemic species, however, studies in these zones are scarce. The development of plant communities in this ecosystems may be determinated by both biotic and abiotic factors ^[1]. Water represents a key factor for community assemblage, as demonstrated by different authors ^[2,3,4].

Objective

To known the water availability effect as a driver on final assemblage (composition, diversity and species richness) of the gypsophile community of the Mexican Potosinian Highland.

How was it evaluated?

90 samples: 30 cm diameter and 5 cm deep

30 experimental units for each treatment Period of experiment: August-november

Measurements

Drymaria lyropetala Sartwellia mexicana

4

Nerisyrenia camporum Bouchetia arniatera

Table 5. Similarity percentage analysis (SIMPER)

	Contribution	p value
Nama stevensii	0.4260	0.0009
Sartwellia mexicana	0.6137	0.2762
Nerisyrenia camporum	0.7596	0.1844
Bouchetia arniatera	0.8553	0.4846
Oenothera pubescens	0.9396	0.6250
Drymaria lyropetala	1.0000	0.0810

Table 2. Total and mean registered plantsin the different treatments

Treatment	Total plants	Mean plants	
1	307	10.2	а
2	50	1.7	b
3	0	0	b
Results obtained by ANOVA and Tukey test. Different letters indicate			

significant differences.

Table 3. Mean richness and diversity registered in the different treatments				
Treatment	Mean richness		Mean diversity	
1	2.2	а	1.47	а
2	1.1	b	1.04	b
3	0	С	_	

Results obtained by GLM for richness and Wilcoxon test for diversity. Different letters indicate significant differences. Fig. 2 NMDS analisys for treatment 1 (270 mm, gray color) and treatment 2 (135 mm, color orange color).

 Table 4. Permutational multivariate analysis of variance (PERMANOVA)

	R ²	p value
Treatment	0.15	0.0031
Residuals	0.84	

What
can we
conclude?In this study was observed that
water had a significant effect on the
community composition and
structure (richness and diversity),
therefore it is considered as a
determinant factor for its
assemblage.

Bibliography:

- 1 Olano, J. M., Caballero, I., Loidi, J., & Escudero, a. (2005). Prediction of plant cover from seed bank analysis in a semi-arid plant community on gypsum. *Journal of Vegetation Science*, 16(Chesson 2000), 215–222.
- 2 Escudero, A., Riondo, M. . I., Olano, J. M., Rubio, A., & Somolinos, R. (2000). Factors affecting establishment of a gypsophyte: the case of Lepidium subulatum (Brassicaceae). American Journal of Botany, 87(6), 861–871.
- **3** Peralta, A. M. L., Sánchez, A. M., Luzuriaga, A. L., & Escudero, A. (2016). Factors driving species assemblage in Mediterranean soil seed banks: From the large to the fine scale. *Annals of Botany*, 117(7), 1221–1228.
- **4** Luzuriaga, A. L., González, J. M., & Escudero, A. (2015). Annual plant community assembly in edaphically heterogeneous environments. *Journal of Vegetation Science*, 26(5), 866–875

Acknowledges: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Slodowska-Curie Grant Agreement No. 777803.

